

LA-UR-21-23167

Approved for public release; distribution is unlimited.

Title: X-ray and Neutron Phase Contrast Imaging at LANL

Author(s): Montgomery, David

Intended for: internal meeting at LANL

Issued: 2021-04-02

X-ray and Neutron Phase Contrast Imaging at LANL

David S. Montgomery, Scientist 5, P-4

February 4th, 2021

X-ray and Neutron Phase Contrast Imaging at LANL

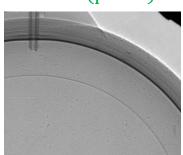
- Motivation and History
- Theory of phase contrast imaging (geometric optics)
- Applications to ICF capsule characterization
- Dynamic X-ray Phase Contrast Imaging
- Neutron Phase Contrast Imaging using Cold Neutrons at LANSCE
- Quantitative Analysis (Phase Retrieval in various regimes)
- Advertisement for Online PCI Course (two 2 hour sessions)
- Summary and Conclusions

Phase contrast has opened new avenues for x-ray imaging since you don't need absorption for contrast

- for nearly 100 years x-ray imaging relied on absorption to get contrast
- many interesting objects are transparent to x-rays but optically opaque
- propagation-based x-ray phase contrast imaging:
 - does *not* require special optics
 - does not require monochromatic x-rays
 - but *does require* sufficient spatial coherence (collimated source, point source)
- x-ray phase contrast imaging relies on wave overlap and interference to produce bright and dark fringes near material density gradients

1896 (absorption)

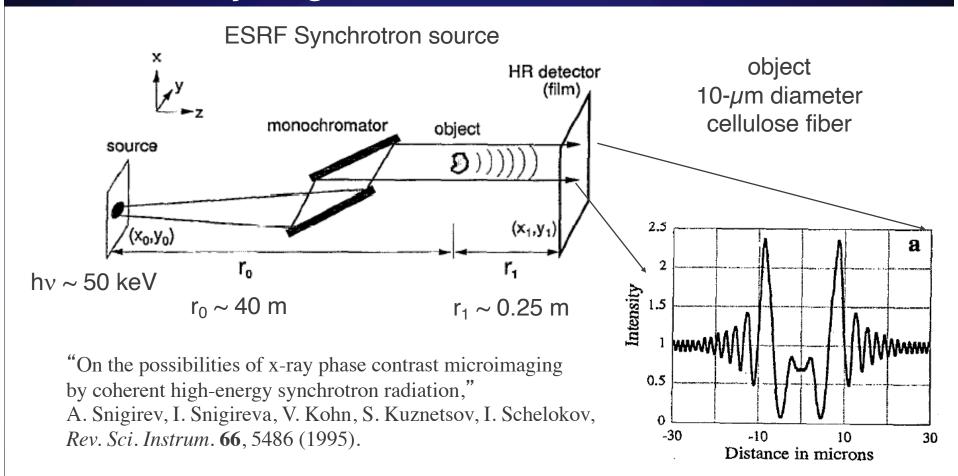
2005 (phase)



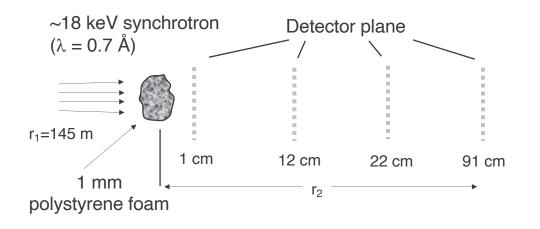
complex index of refraction: $n = 1 - \delta + i\beta$

phase:
$$\varphi = \frac{2\pi}{\lambda} \int (n(x, y, z) - 1) dz \sim \varrho T(x)$$

Propagation-based X-ray phase contrast imaging first observed by Snigirev and co-workers in 1995



XPCI produces "high contrast" images for otherwise transparent objects



1 cm 12 cm b

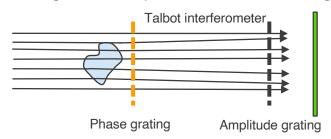
- No contrast observed at r₂ ~ 0
- Contrast increases with increasing r₂
- Broadening from diffraction with increasing r₂

P. Cloetens et al., J. Phys. D 32, A145 (1999)

Various "phase contrast imaging" methods: propagation based method doesn't require special optics

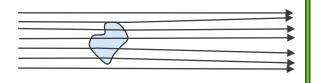


"Grating-based" phase contrast imaging



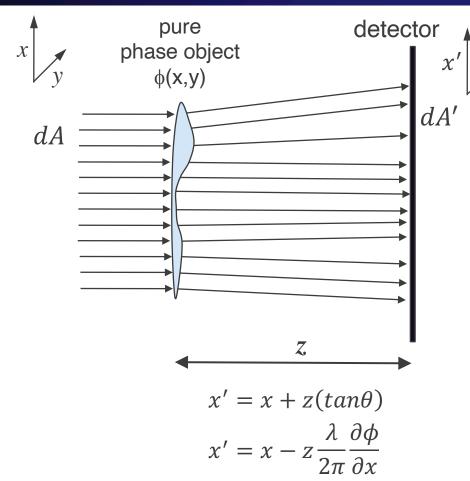
 $\delta I \sim \nabla \phi$ "Schlieren-like"

"Propagation-based" phase contrast imaging



 $\delta I \sim \nabla^2 \phi$ "Shadowgraphy-like"

Propagation-Based Phase Contrast Imaging: a **Geometric Optics View**



mapping of (x, y) to (x', y')area $dA(\partial x \partial y)$ has area $dA'(\partial x' \partial y')$

Relative intensity at *z* is $dA/dA' = \left(\frac{\partial x'}{\partial x}\frac{\partial y'}{\partial v}\right)^{-1}$

$$\frac{\partial x'}{\partial x} = 1 - \frac{\lambda z}{2\pi} \frac{\partial^2 \phi}{\partial x^2}, \quad \frac{\partial y'}{\partial y} = 1 - \frac{\lambda z}{2\pi} \frac{\partial^2 \phi}{\partial y^2}$$

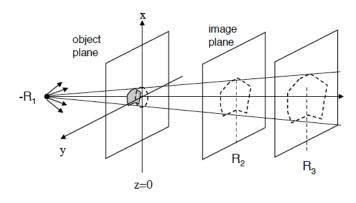
$$I(x', y') = I_0 \left(1 - \frac{\lambda z}{2\pi} \nabla_{\perp}^2 \phi \right)^{-1}$$

in the limit of small argument

$$I(x', y') \approx I_0 \left(1 + \frac{\lambda z}{2\pi} \nabla_{\perp}^2 \phi \right)$$

B. Jensen, D. Montgomery et al. (2019)

Different regimes of propagation are characterized by the dimensionless Fresnel number



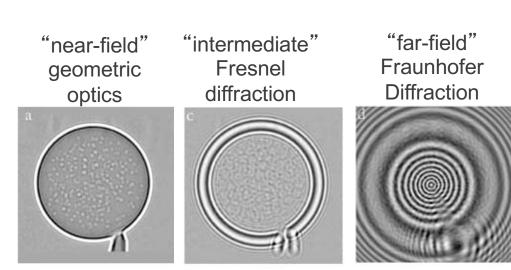
Fresnel Number $N_F = a^2/\lambda z$

 $N_F >> 1$: geometric optics

 $N_F \sim 1$: Fresnel diffraction

 $N_F \ll 1$: Fraunhofer diffraction

from Gureyev et al (1999)

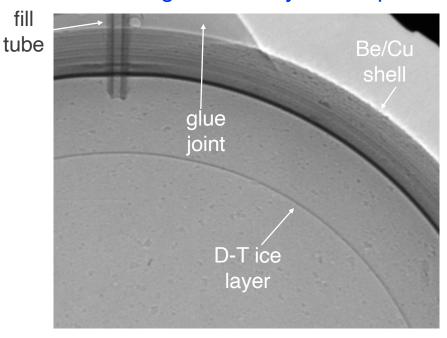


all regimes of N_F can be useful for x-ray phase contrast imaging

XPCI was further developed by LANL starting in 2004 to characterize cryogenic ICF capsules on NIF

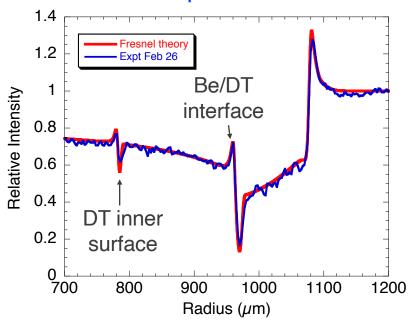
XPCI image of first cryo Be capsule

fill



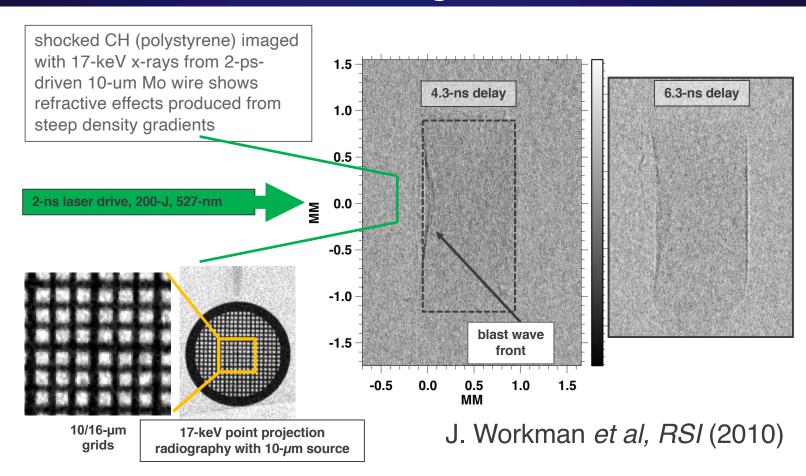
8 keV Cu K- α , 5- μ m spot $R_1 = 7.3$ cm, $R_2 = 68.5$ cm, M = 10.4(divergence $\sim 70 \, \mu rad$)

comparison of Fresnel modeling and experimental data

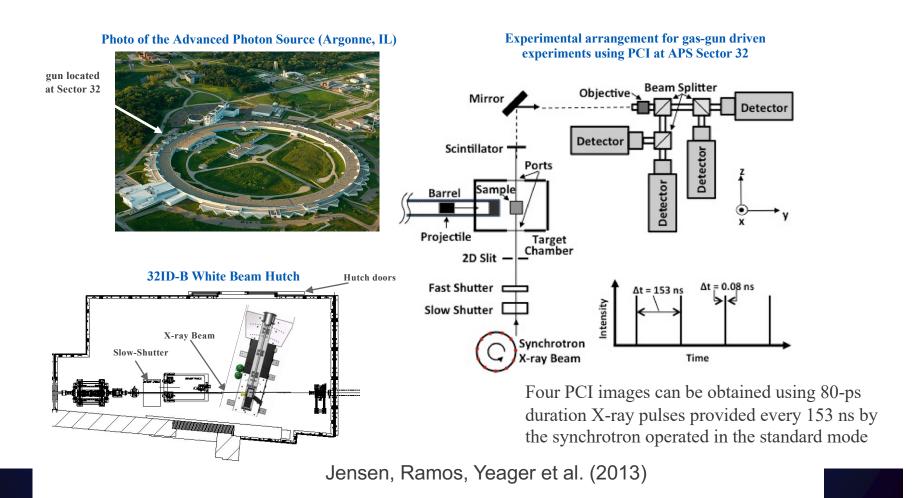


- D. Montgomery et al. RSI (2004)
- D. Montgomery et al. IFSA (2005)

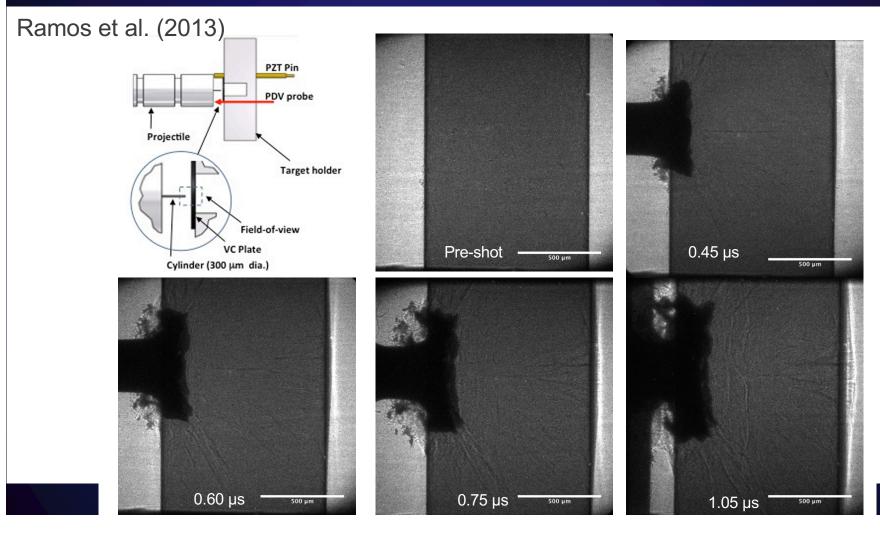
First ever XPCI in dynamic experiments was demonstrated on Trident using laser-driven blast wave



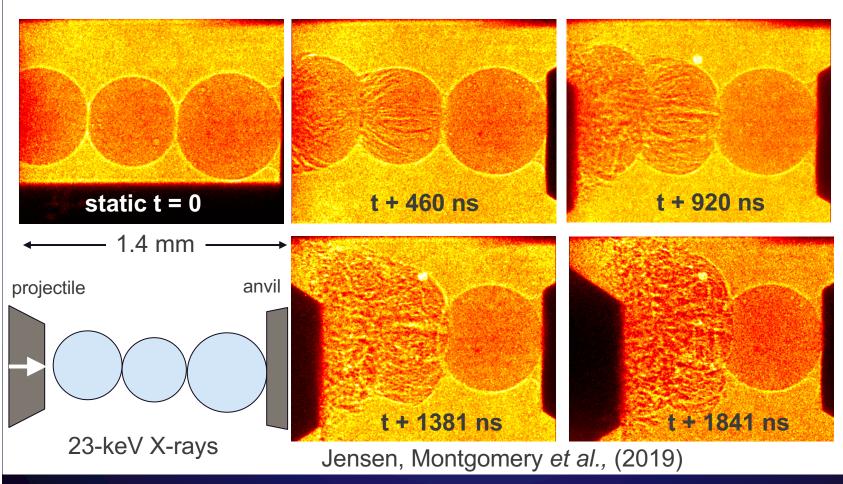
XPCI of dynamic material experiments was pioneered by LANL at the APS synchrotron beginning in 2013



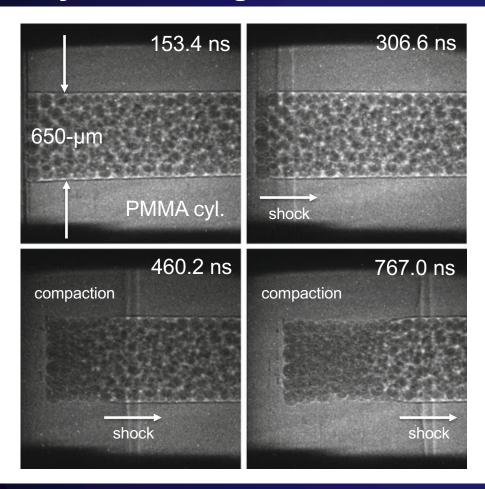
XPCI shows crack formation and propagation in vitreous carbon in APS synchrotron experiments



Four frame movie of Pyrex spheres impacted by steel projectile at ~ 240 m/s obtained with XPCI at APS



XPCI is informing us about shock and compaction dynamics in granular and heterogeneous materials



- 104-µm Pyrex spheres packed in 650-µm diameter cylindrical bore of PMMA
- Cu flyer plate impactor from the left
- similar experiments on Martian and Lunar soil simulants (Regolith) were performed, and are being analyzed

Jensen, Montgomery et al. (2019)

Phase contrast imaging with neutrons?

- Many interesting objects are opaque to visible light, x-rays, but transparent to neutrons: How do you image them?
- neutron de Broglie wavelength (vacuum): $\lambda_0=h/m_n$ v "thermal neutrons" $\lambda_0\approx$ 1.8 Å $k_0=2\pi/\lambda_0=\sqrt{2m_nE/\hbar}$
- neutron-nucleus potential: $V(\vec{r}) = 2\pi\hbar^2/m_n b\delta(\vec{r})$

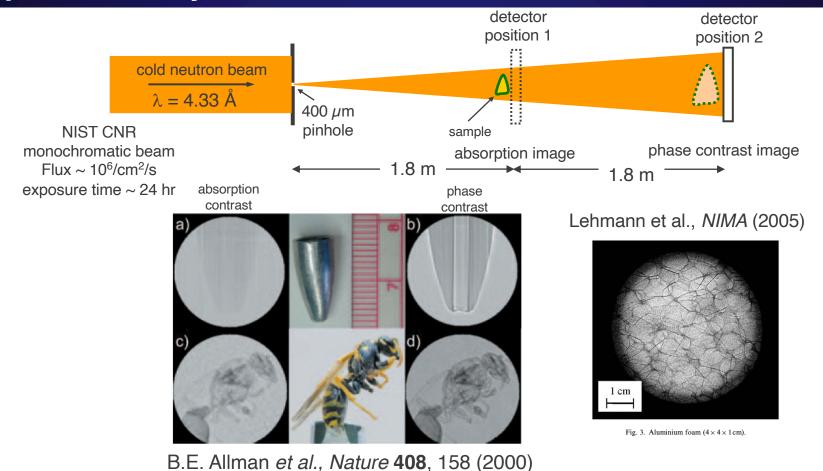
$$ar{V}=2\pi\hbar^2/m_n
ho$$
 , where $ho=\sum_i b_i N_i$

• neutron obeys Schrödinger's equation: $[\nabla^2 + 2m\,(E-\bar{V})/\hbar^2]\psi(r) = 0$

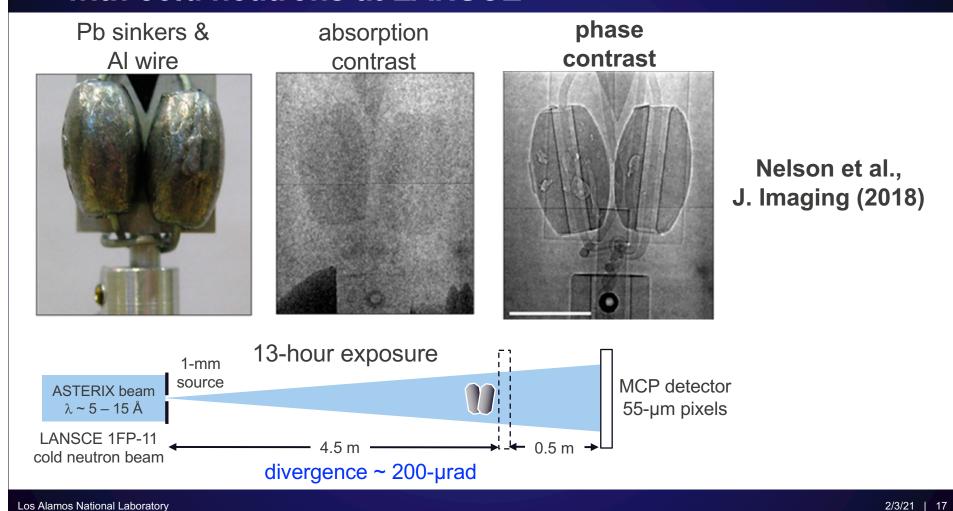
$$k^2 = 2m(E - \overline{V})/\hbar^2 = k_0^2 - 4\pi\rho$$
 Schrodinger Eq. reduces to Helmholtz Eq. for optics
$$|\nabla^2 + k^2|\psi(r) = 0$$

 $n = 1 - \delta + i\beta$ same theory applies as for x-rays

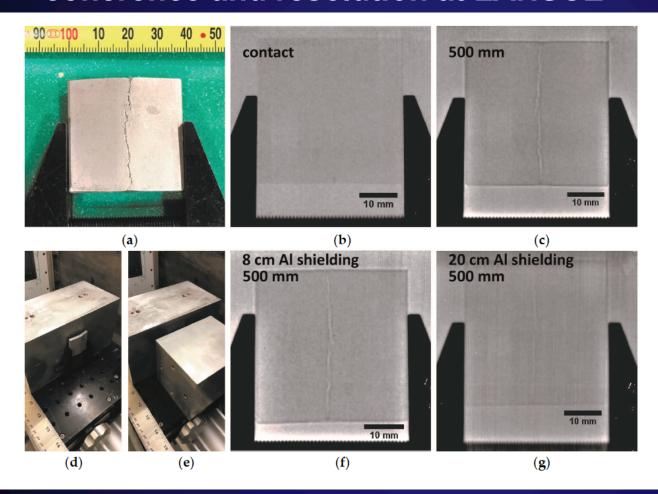
Phase contrast imaging using neutrons was first performed by Allman et al. in 2000



Neutron Phase Contrast Imaging was demonstrated with cold neutrons at LANSCE



"Fast" neutron PCI is possible with relaxed spatial coherence and resolution at LANSCE



cracked Al sample: 4 cm x 4 cm x 0.5 cm crack width ~ 150-µm

Si flat panel detector ⁶Li:ZnS scintillator 127-µm pixels

source: 5 mm aperture (1 mRad divergence) 25x more flux (10 – 30 min exposure)

source to object.: 4.5-m object to detector: 0.5-m

Nelson et al., J. Imaging (2018)

Phase retrieval: approximations, ideal, general non-ideal

 $I_{ideal} = |exp[i\varphi] * exp[i\chi]|^2$ (no noise, no blur, seldom applicable)

$$I_{non-ideal} = \mathcal{D}\{blur * |exp[i\varphi] * exp[i\chi]|^2\} + \eta$$
 (noise, blur, general case)

- geometric optics or TIE regime: linearize the propagator $exp[i\chi] \approx 1 + i\chi$
- CTF regime: linearize the electric field $exp[i\varphi] \approx 1 + i\varphi$
- idealized general phase retrieval (exact, diffraction propagation, no noise/blur)
 - iterative methods (Gerchberg-Saxton, Fienup)
- non-ideal general phase retrieval (robust to noise, blur, use "super-resolution")
 - image is noisy, blurry due to instrument resolution, finite beam divergence
 - often under-sampled in dynamic experiments (features ~ pixel size or smaller)
 - B. Wohlberg LDRD-DR on inverse problems

Phase retrieval in the geometric optics (TIE) regime has limited applicability for most of our experimental data

• geometric optics regime: small propagation distances

 $exp[i\chi] = cos(\chi) + i \cdot sin(\chi) \approx 1 + i\chi$

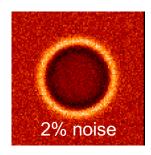
$$\chi = q^2 z/k$$
 $k = 2\pi/\lambda$

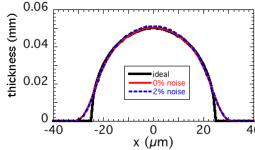
pro: insensitive to noise

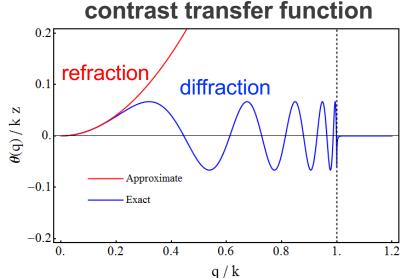
con: refraction only, limited range of use

when does $sin(\chi) \approx \chi$? $z \leq \Delta x^2/2\lambda$

$$\Delta x = 1.5 \mu m, \lambda = 0.5 \text{Å} \rightarrow z \leq 22.5 \text{mm}$$







TIE retrieval for large z smooths out edges in retrieved object

CTF-based phase retrieval can be exact if linearization is applicable (weak phase object)

exit wave linearization: $exp[i\varphi] \approx 1 + i\varphi$

valid *only* when:
$$\varphi << 1$$
 or $|\varphi(r + \lambda z u) - \varphi(r - \lambda z u)| << 1$

T=10 μm,
$$\delta$$
 = 4e-7, λ = 0.5 Å --> φ ~ 0.5 z = 0.5 m , λ = 0.5 Å, Δx = 1.5 μ m --> λzu ~ 8 μ m

CTF retrieval includes diffraction, refraction, absorption (exact in linear limit)

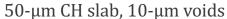
$$\hat{\varphi}(\boldsymbol{u}) = \frac{FFT[I/I_0 - 1]}{2sin(\pi\lambda z \boldsymbol{u}^2) - 2cos(\pi\lambda z \boldsymbol{u}^2)} = \frac{FFT[I/I_0 - 1]}{CTF(\boldsymbol{u}, \lambda, z)}$$

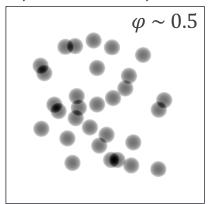
CTF has zero crossings, so even noiseless problem needs regularization

exciting possibility to include blur with regularization

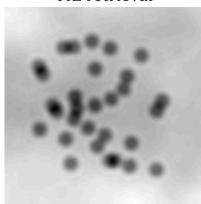
$$\hat{\varphi}(\boldsymbol{u}) = \frac{FFT[I/I_0 - 1]}{CTF(\boldsymbol{u}, \lambda, z) \cdot MTF(\boldsymbol{u})}$$

CTF phase retrieval with TGV-based regularization[†] looks extremely promising for this limited problem class

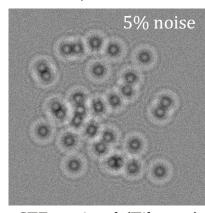




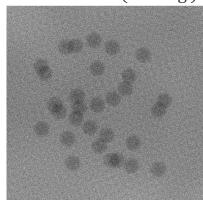
TIE retrieval



25 keV, z = 100 mm

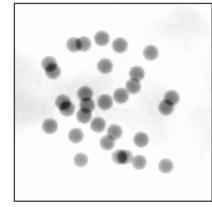


CTF retrieval (Tik. reg.)





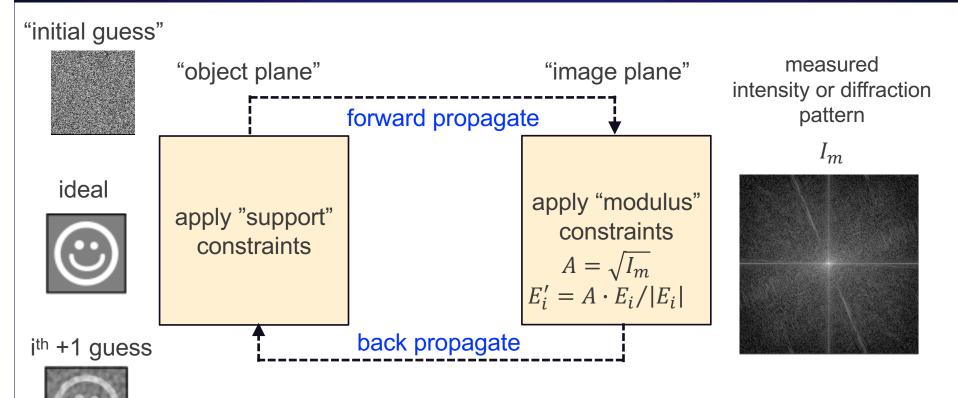
CTF retrieval (MHOTV reg.)



†Sanders et al. "Multiscale higher-order TV operators for L1 regularization", Adv. Struct. Chem. Imag. (2018)

Montgomery et al. in preparation (2021)

Iterative phase retrieval techniques rely on full wave propagation to converge to a phase solution



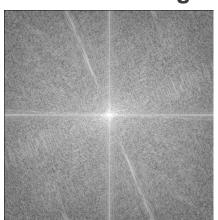
support constraints differentiate the various iterative algorithms, convergence

Gerchberg & Saxton (1972) Fienup (1978)

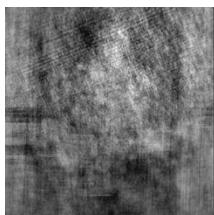
Hybrid Input-Output (HIO) algorithm[†] on idealized synthetic data shows slow numerical convergence

- demonstration in the far-field regime (FFT propagator)
- also possible in the near-field regime (Fresnel propagator)
- ideal case, no noise, no blur
- very slow to converge, takes 1000's of iterations

"phase object" "measured image"



20 iterations

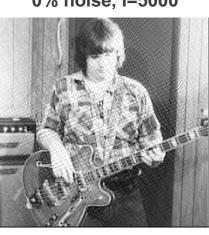


200 iterations

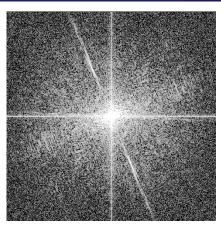
[†] Fienup (1978), (1982)

Iterative algorithms are extremely slow to converge in the presence of noise

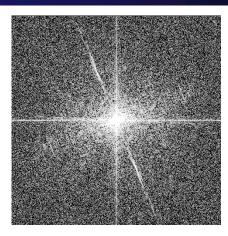
0% noise, i=5000



0.1% noise, i=5000



0.5% noise, i=5000



2% noise, 5000 iterations

Plans to hold an online course for propagation-based Phase Contrast Imaging

- Two day course (2 hour lectures each day)
- Day 1: cover propagation-based phase contrast imaging theory
 - image formation theory (geometric optics and scalar diffraction)
 - rules and guidelines for optimizing PCI setup in experiment
 - numerical forward modeling with scalar diffraction to predict image formation (will provide MatLab and IDL scripts)
- Day 2: quantitative phase retrieval techniques
 - geometric optics (TIE) phase retrieval
 - contrast transfer function (CTF) phase retrieval
 - iterative phase retrieval algorithms (Gerchberg-Saxton, Fienup, ...)
 - (will provide MatLab and IDL scripts)
- Tentatively in the April May 2021 time frame

Summary and Conclusions

- propagation-based phase contrast imaging
 - does not require specialized optics
 - does not require monochromatic source (broad band source okay)
 - only requires sufficient spatial coherence
- first application of XPCI to dynamic experiments by LANL
- applied to cold neutron sources at LANSCE and elsewhere
- can be quantitative, similar to absorption-based imaging
 - phase ~ projected areal density, same as absorption-based imaging
- Advertisement for phase contrast imaging class